| Species Tag: | 75002 | Species Name: | H2NCH2COOH I | |--------------------|-----------------|---------------|--------------------------| | Version: | 1 | | Glycine, Conformer I | | Date: | Jan. 1996 | | ground and first | | Contributor: | H. S. P. Müller | | excited torsional states | | | | | | | Lines Listed: | 27217 | Q(300.0) = | 124879.8881 | | Freq. $(GHz) <$ | 1000 | Q(225.0) = | 100530.4504 | | Max. J: | 40 | Q(150.0) = | 68673.2239 | | LOGSTR0 = | -11.0 | Q(75.00) = | 29376.5224 | | LOGSTR1 = | -8.0 | Q(37.50) = | 10752.5529 | | Isotope Corr.: | | Q(18.75) = | 3810.1565 | | Egy. $(cm^{-1}) >$ | 0.0 | Q(9.375) = | 1350.3826 | | $\mu_a =$ | 0.911 | A= | 10341.530 | | $\mu_b =$ | 0.607 | B= | 3876.1798 | | $\mu_c =$ | | C= | 2912.3525 | | | | | | This is the lowest energy conformer of glycine. The data were taken from (1) R. D. Suenram and F. J. Lovas, 1980, J. Am. Chem. Soc. **102**, 7180 (millimeter wave region), and (2) F. J. Lovas, Y. Kawashima, J.-U. Grabow, R. D. Suenram, G. T. Fraser, and E. Hirota, 1995, Astrophys. J. Lett. **455**, 201; (microwave region, dipole moment, and ¹⁴N quadrupole coupling). The ground and first excited states have been fit simultaneously, using only changes in the vibrational constants for the excited state. The reported hyperfine splittings have been used in the fit, but because they were well below 1 MHz for the strongest lines, they have not been included in the catalog file. The estimated torsional energy of 72 cm⁻¹ has been taken from an *ab initio* calculation (SCF/DZP, scaled by 0.9; (3) C. H. Hu, M. Shen, and H. F. Schaefer, III, 1993, J. Am. Chem. Soc. **115**, 2923). In (1) lines were also reported for the second and third excited torsional state. For the relative intensities between ground and first excited torsional states the approximate position of the torsional state was taken into account. Because there are several low lying vibrational modes that have not been investgated, the partition function was calculated for the ground state alone, including the nitrogen spin degeneracy. The partition function was calculated up to J=150 because of the small rotational constants.